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Abstract 

 

     The Gabriel’s Horn, which has finite volume and infinite surface area, is not an inconsistency 

in mathematics as many people think. Although it is inconceivable with a Euclid-based logic, it 

is very logical with modern mathematics. The infinite surface area of the solid is very reasonable 

due to the exponential rate of change of hyperbolic surfaces when it tends to infinity. Also, its 

finite volume can well be compacted into a finite spherical cap by projective and conformal 

transformations. Furthermore, the volume  can be easily calculated after 

testing for convergence of the improper integral.  

  

                                                           
1 I thank Professors I. Danastor and J. Campbell and the editors for their useful insight, and I greatly appreciate 

Robert Slattery’s help in proofreading this paper. 

     2The name comes from the archangel Gabriel who, in the Bible, used a horn to announce good news, the birth of 
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Gabriel’s Horn:
2
 An Understanding of a Solid with Finite Volume and Infinite Surface Area 

     

     Is it possible to cover the surface of earth with a pea
3
? This question may seem bizarre 

because it seems not to make any sense: a pea of a few cubic centimeters obviously cannot 

contain Earth’s . However, when carefully thinking about the question 

considering its inferences, one will discover that, although the literal pea may not do the work, 

some other solids may. A perfect example is the Gabriel’s Horn, which has finite volume and 

infinite surface area: it can cover millions of Earths. This solid has been the center of controversy 

since its discovery by Evangelista Torricelli in 1641 because it is “logically” impossible to have 

that kind of solid based on what intuition dictates (Mancosu & Vailati, 1991, p. 50). This 

discovery not only violently struck the mathematical community at that time because it violated 

secular ideas about geometric figures, but it also shook the philosophical assumption about 

infinity (Mancosu & Vailati, 1991, p.50). However, what is surprising is that the ambiguity 

evolved from the counterintuitive property of this solid is logically consistent with modern 

mathematical theories. In order to understand why it contradicts traditional ideas and how it 

works perfectly with more recent ones, a development of the ancient Euclidean geometry is 

necessary along with the recent non-Euclidean geometry; also, in a deep study of this solid, two 

analytical methods will be presented to illustrate that the volume is finite.  

                                                           

     2The name comes from the archangel Gabriel who, in the Bible, used a horn to announce good news, the birth of 

Jesus, or bad news, Armageddon (Fleron, 1999, p.35). This solid is also known as the Torricelli’s trumpet.       

     3A version of a famous mathematical paradox, the Banach-Tarski paradox, is that a pea can cover the surface of 

the sun. In this paradox, the surface of the pea is not considered to be infinite; however, the points inside the pea can 

be grouped into pieces and those pieces, when rotated in a specific way and reassembled, can cover all the points in 

the sun. One needs to know that pea and sun are all mathematical objects assumed to be composed of points. There 

is a more formal definition of this paradox is given by the theorem, “If A and B are any subsets of the spherical 

surface , both having non-empty interiors, then there exists two finite partitions into 

disjoint pieces  and , such that  is congruent to  by rotation of the 

sphere for ” (Mycielski, 1987, p. 698). This theorem can be proved by the Zermelo’s axiom of choice that 

states that if considered a set of disjoint non-empty subsets, there exists at least one set that has exactly one element 

in common with each subset. Like the Gabriel’s horn, this axiom is controversial, and many mathematicians refuse 

to use it while many praise it. 
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Euclidean Geometry 

     Before beginning developing the whole body of mathematical knowledge built by Euclid 

(300), a history of this powerful man would be necessary. Euclid (or Ευκλειδης in Greek) lived 

in a period when Alexandria was founded and where science, art, and several other forms of 

knowledge flourished. Indeed, 331 B.C. knew significant changes; for example, this is at the 

same epoch that the lighthouse at Faros was built; such a monument was considered one of the 

world’s Seven Wonders. In this period of extensive progress, Euclid has greatly contributed to 

mathematics by inventing a new way of thinking (Holme, 2002, p. 67). The fundamental idea on 

which Euclid’s work is based is clearly defined by “The Hypothetical-Deductive Method,” 

which says that:  

      All known geometric facts or theorems should be deduced by agreed upon logical 

rules of reasoning from a set of initial, self evident truths, called postulates. The 

postulates should be such that every informed person would agree on their validity, to 

the extent that they did not require proof. The set of postulates should be kept as 

small as possible, thus one should endeavor to construct proofs of assertions which, 

even though self evident, could be deduced from other even more fundamental self 

evident ones. (Holme, 2002, p. 68) 

This is how Euclid constructs his geometry, where he defines more complex figures or properties 

of these figures by using the fundamental concepts, such as points, lines, or planes. 

     Indeed, Euclid based his geometry on five axioms, which are self-evident principles that are 

accepted as true without any proof, and five postulates, which are considered less obvious than 

axioms. Those axioms and postulates are well developed in his The Elements composed of 

thirteen books, which are divided into three main categories: plane geometry, Books I-IV; 
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arithmetic, Books VII-X; and solid geometry, Books XI-XII (Artmann, 1999, p. 3). The focus 

will be on Book I because it develops the basis of Euclidean geometry, where the notions of 

points, lines, and angles are defined. Artmann’s Euclid-The Creation of Mathematics is the book 

that will be used to develop the definitions, postulates, propositions in The Elements. Some of the 

definitions considered are: 

1. A point is that which has no part. 

2. A line is breadthless length. 

3. The extremities of a line are points. 

4. A plane angle is the inclination to one another of two lines in a plane which meet one 

another and do not lie in a strange line. 

5. And when the lines containing the angle are straight, the angle is called rectilinear. 

6. A surface is that which has length and breadth only. 

7. A plane surface is that which lies evenly with the straight lines on itself. 

8. A solid is that which has length, breadth, and depth. 

9. Parallel straight lines are straight lines which, being in the same plane and being produced 

indefinitely in both directions, do not meet one another in either direction (p.18)  

One needs to understand that a point and a line are all abstract, that is, one needs not expect to 

find exact real representation of an infinite breadthless line or a zero-dimension point with no 

mass; also, Euclidean geometry is the geometry on a flat plane. In the book, there are twenty-

two definitions, but only the definitions that are relevant to our objective are presented.  

          Later, Euclid comes with his five famous postulates: 

1. Let it be postulated to draw a straight line in a straight line, 

2. To produce a limited straight line in a straight line, 
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3. To describe a circle with any center and distance, 

4. That all right angles are equal to each other. 

5. That, if a straight line falling on two straight lines makes the interior angles on the 

same side less than two right angles, the two straight lines, if produced indefinitely, 

meet on that side on which are the angles less than the two right angles (Artmann, 

1999, p. 19). 

The fifth postulate is very important because it holds the key for the development of other types 

of geometry that we shall develop later. As a result, proposition I.27 in The Elements on parallel 

lines and its proof are presented:  

     Prop. I. 27: If a straight line falling on two straight lines makes the alternate angles equal to 

one another, the straight lines will be parallel to one another. 

 

     Proof: For let the straight line EF falling on two straight lines AB, CD make the alternate 

angles AEF, EFD equal to one another (Fig. 1); AB is parallel to CD. 

Figure 1 

                           A                E                              B 

                        / 

    

                                                                                         G 

                    C               F                                   D 

                    / 
     Source: This figure is adapted from the proof of the Euclid’s parallel proposition by B. Artmann, 1999, Euclid-

The Creation of Mathematics p. 32. 

 

     For, if not, AB, CD when produced will meet either in the direction of B, D or towards A, C. 

     Let them be produced and meet, in the direction of B, D at G. Then, in the triangle GEF, the 

exterior angle AEF is equal to the interior and opposite angle EFG: which is impossible. 

     Therefore AB, CD when produced will not meet in the direction of B, D. 

     Similarly it can be proved that neither will they meet towards A, C. 
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But Straight lines which do not meet in either direction are parallel; therefore AB is   parallel to 

CD [Proved in Prop. I. 16] (Artmann, 1999, p. 31-32). 

     In addition to definitions and postulates, there are axioms that deal with more than geometric 

figures; Euclid names them “common notions,” which are: 

1. Things equal to the same thing are also equal to one another. 

2. If equals are added to equals the wholes are equal. 

3. If equal are subtracted from equals the remainders are equal. 

4. Things which coincide with one another are equal to one another. 

5. The whole is greater than the part (Artmann, 1999, p. 19) 

One needs to notice that a Euclidean surface is composed of lines that are straight and that most 

Euclidean solids are also composed of straight lines, which do not always constitute all solids, 

particularly solids that are formed by curved lines. 

     Euclid’s geometry had been considered the ultimate truth in mathematics for years, and the 

Elements has been one of the most important scientific books for centuries. To have an idea of 

how well this book was respected, it was one of the first mathematics books to be printed after 

printing presses had been invented; also, even Abraham Lincoln chose it as his favorite book to 

have a peaceful sleep (O’Shea, 2007, p. 55). Another striking, if not shocking, example of the 

value of Euclid in some societies is the interpretation or the use of his book to fulfill some needs 

that have almost nothing to do with science: in the United States, it was believed that the book 

had a special luck with women; consequently, students at Mount Holyoke College, an all women 

college, would be required to have and memorize Simson’s or Playfair’s Euclid, the fifth 

postulate (O’Shea, 2007, p.55). Then, one needs to see that the Euclidean mathematical system 

went beyond the boundary of science; it had even shaped how many people saw the world in 
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which they live and helped them realize some fantasies that they could not by themselves. One 

can now understand why challenging the base of Euclidean geometry would cause great tumult 

not only in the mathematical community but also in the overall society.  

Non-Euclidean Geometry 

     Indeed, controversy arose when a group of young mathematicians revealed that Euclid’s fifth 

postulate is not always true or not true at all. This postulate had long been considered to have 

something that is not quite true. Greeks writers had tried to give a more rational explanation of it 

but failed (Gray, 2004, p. 20). Also, O’Shea (2007) pointed out that the length of the fifth 

postulate compared to the four other ones might suggest that even Euclid knew about the 

ambiguity of that postulate; therefore, he took more time to explain it (p. 57). One needs to know 

that the fifth postulate is central to Euclid’s Elements; without it, a great part of his logical body 

of mathematics would not have existed. For example, the parallel postulate is used to 

demonstrate the Theorem of Pythagoras, which states that the square of the greater side in a right 

triangle is equal to the sum of the squares of the two other sides; also, the theorem that the sum 

of the angles in a triangle is exactly two right angles and the construction of similar triangles 

depend exclusively on the fifth postulate (Gray, 2004, p. 19-20). Those three young 

mathematicians, Johann Carl Friedrich Gauss (1777-1855), Nikolai Ivanovich Lobachevsky 

(1792-1856), and Janos Bolyai (1802-60) brought a significant contribution to challenge the fifth 

postulate (O’Shea, 2007, p. 62). Those brilliant men discovered that other geometries were 

consistent without the fifth postulate; those geometries, under a generic name of non-Euclidean 

geometry, are usually called elliptic geometry, spherical geometry, and hyperbolic geometry. 

Focus will be on hyperbolic geometry since part of it will be used to explain why the solid given 

by the revolution of a hyperbola has finite volume and infinite surface area. 
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    Furthermore, Riemann, a prominent Gauss’s student, revolutionized the area of geometry by 

radically considering surfaces as a space in themselves (Maor, 2007, p. 174). This critical change 

resulted in studying other spaces that are not Euclidean, which are called curved space. Since 

those spaces are not Euclidean, their properties are often paradoxical, compared to Euclidean 

properties that often are easily understood. Some notions of this new version of geometry will be 

used to evaluate the surface area of the Horn. 

Hyperbolic Geometry 

     An easy definition of hyperbolic geometry is that it is a non-Euclidean geometry in which the 

fifth postulate does not hold; the parallel postulate for the hyperbolic plane is “Given a line and a 

point outside it. Then there are at least two lines through the point which do not meet the line” 

(Holme, 2002, p. 195). Before a graphical representation of this postulate is given, more basic 

notions need to be defined: Points on a hyperbolic plane are the same as points on a Euclidean 

plane, but hyperbolic lines
4
 are different from Euclidean lines in that they curve. Also, those 

properties that are true with Euclidean lines may be false with hyperbolic lines: if two lines are 

parallel to a third, these lines are parallel to each other; if two lines are parallel, the distance 

between them will be constant everywhere; and infinite lines do not have boundary (Castellanos, 

2007, para. 2). In order to better understand those counterintuitive properties of lines, Euclidean 

representation of non-Euclidean planes, called models, are presented. The most used ones are the 

Klein model, the hyperboloid model, the Poincaré disc model, and the Poincaré half-plane 

model. For the purpose of this paper, the two last models are presented. 

  

                                                           

     4Although hyperbolic lines are curved on a Euclidean place, they are “straight” on a hyperbolic surface. The 

notion of straightness does not exist only in Euclidean geometry.  
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     In the disc model, points in the non-Euclidean space are inside a circle called the Boundary 

Circle; points on the boundary are not part of the space and do not have any functions. Non-

Euclidean straight lines are either Euclidean straight lines perpendicular to the boundary circle or 

arc of circles perpendicular to the boundary circle (Gray, 2004, p.93). 

Figure 2 

Poincaré Disk Model 

                                        
 

Note. The Disk Model is taken from “Poincaré Hyperbolic Disk” by E. W. Weisstein, 2008a from 

http://mathworld.wolfram.com/PoincareHyperbolicDisk.html. 

 

     In the circle, lines are infinite. One can wonder how those lines can be infinite. One property 

in hyperbolic geometry is that things get smaller when they get closer to the Boundary Circle; 

this means that the lines will never touch the circle even if they are “infinitely” long. Also, there 

is not a constant distance between two parallel lines (Castellanos, 2007, para. 2). 

     On the other hand, lines are represented by semicircles with their centers on the x-axis in the 

Poincaré Half-Plane model. Those lines obey all Euclidean properties of line except the parallel 

postulate. 
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Figure 3 

Poincaré Half-Plane Model 

 

 
 
Note. This figure is taken from “The Upper Half Plane” from                       

http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/modl/uhp/. 

                          

In this plane, line n is parallel to m that is parallel to l; however, n is not parallel to l, which 

contradicts the Euclidean rule which states that if two lines are parallel to a third, those lines are 

parallel to each other.  

     Previously, some concepts of non-Euclidean geometry have been developed to fully explain 

the counterintuitive properties of the Gabriel’s Horn. Now, the method of construction of the 

solid is presented along with the properties that violate some Euclidean rules. 

     Gabriel’s Horn is formed by revolving the rectangular hyperbola given by the function  

around the x-axis with . A more formal definition of hyperbolic geometry is needed: 

“Hyperbolic geometry is a non-Euclidean geometry that has a constant sectional curvature -1” 

(Weisstein, 2008b, para. 1). A sectional curvature calculates the rate of change of the geodesic 

deviation, and a hyperbola is the geodesic on Gabriel’s Horn. Thus, it will be shown that the 

curvature of the hyperbola is -1 to conclude that the surface of the solid does not constitute a 

Euclidean plane, which has a curvature 0.  
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Figure 4 

Gabriel’s Horn 

 
Note. This figure is taken from the article “Gabriel’s Wedding Cake” by J. F. Fleron, 1999, The College 

Mathematical Journal, 30, pp. 35-38. 

 

The parametric equations of the branch of a rectangular hyperbola is 

 

 

 

 

The formula of a curvature k of a plane given parametrically is given by the formula 

 

 

 

When replacing the values of x and y of the parametric equations of the hyperbola in k,  

 

 

 

To find t in k, x and y are replaced by 1 in the parametric equations because y = 1/x. x is easily 

found by considering one of the parametric equations and replacing it by their exponential 

equivalent; thus, 
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And by replacing t by 0 in k,  

 

 

 

Since the curvature of the hyperbola is -1 and hyperbolas constitute the surface of the Gabriel’s 

Horn, we easily can understand that the surface of the solid constitutes a non-Euclidean plane of 

curvature -1 as Euclidean lines with a curvature 0 constitute a Euclidean plane of curvature 0. 

     Now that it is established that Gabriel’s Horn is not Euclidean, it will geometrically be 

demonstrated how the surface area can be infinite and the volume finite. A surface of an object is 

a two-dimensional manifold whose representation is possible on a sheet of paper. It is two-

dimensional because the plane is generated by two independent vectors (O’Shea, 2007, p. 22). 

Furthermore, a surface area is the area of the surface; it is the measure of how much surface is 

exposed (Weisstein, 2008c, para. 1). In order to show how the surface of the solid is infinite, the 

surface of the solid is divided into non-Euclidean non-overlapping triangles; Euclidean triangles 

would not work because they do not have the curvature of the solid in question. Besides, the sum 

of the angles in a hyperbolic triangle is less 180 degrees; this sum can be calculated by the 

formula 

 

 

where k represents the curvature of the surface (Graustein, 1962, p.188). This formula will not be 

demonstrated because such a proof is not relevant to the subject. Thus, the area of the solid is the 

sum of the area of the triangles. 
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      Now, let us analytically show how the area can be infinite. The parametric equations for the 

surface of Gabriel Horn when revolved around the z-axis are 

 

 

 

Definition. Let S be a smooth parametric surface 

 

defined over an open region D in the uv-plane. If each point on the surface S corresponds to 

exactly one point in the domain D, then the surface area of S is given by 

 

where  

 

The parametric surface of the Horn is then 

 

Now,  

 

So, the cross product of those vectors is 
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Then, 

 

 

Thus, the surface area A of the solid is 

 

the reason why the area is infinite is because the interior integral evaluates the length of the 

geodesic line on the Horn, which is infinite. Revolving around the z-axis still makes it infinite 

since size of objects is invariant under rotation. 

     Another reason why this solid with infinite length could never exist based on Euclidean 

assumptions is that when each longitudinal lines diametrically opposite to each other form an 

angle less than 90 degrees to a vertical line crossing them, they never touch; according to the 

Euclid’s fifth postulate, those lines would have to touch at a point, which would make the solid 

finite both in volume and surface (figure 5). 

Figure 5 

Longitudinal Cross-Section of the Horn 

 

 Since the solid is infinite, the surface area of the solid is also infinite. The infinite size of the 

area of the solid is less interesting since one can make the “rational” deduction that an infinite 
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solid should always have an infinite surface area, although such a solid may be only in the realm 

of imagination. This deduction can go further to generalize every property of this solid: since 

surface and volume are mathematically linked in many cases, there is no doubt that one would 

think that the volume of the solid is infinite, but it is not always the case. The volume is finite! 

     This is what has been tormenting people since Torricelli discovered that solid. It is intuitively 

impossible to have such a solid, but mathematics has proved the contrary.  

An Analysis of the Volume of the Solid 

     It has been shown how the surface area of this solid of curved surface can be infinite and the 

possibility of different measures of object based on the space considered. Now, it is shown how 

the volume is finite by two methods. When the function f(x) = 1/x from 1 to infinity is 

considered and is revolved around the x-axis, the volume formula of the Horn can be given by 

the Disk Method as 

 

Therefore, the volume of the Gabriel’s Horn is 

 

 

 

Although this integral is similar to a Riemann integral, it is not because both function and 

domain are unbounded. Some definitions about how to construct a Riemann integral are needed 

before going any further: 

Definition. If  is a partition on the closed interval  and f is a function 

defined on that interval, then the n-th Riemann Sum of f with respect to the partition P is 
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where  is an arbitrary number in the interval  (Wachsmuth, 2007, n.p.). 

Definition. The upper sum of f with respect to the partition P is 

 

where  is the supremum of f(x) in the interval , and the lower sum of f with respect to 

the partition P is  

 

where  is the infinum of f(x) in the interval  (Wachsmuth, 2007, n.p.). 

Definition. Suppose f is a bounded function defined on a closed, bounded interval . Define 

the upper and lower Riemann integrals, respectively, as  

 

 

If the function f is called Riemann integrable and the Riemann integral over the 

interval  is denoted by  (Wachsmuth, 2007, n. p.). 

Because the integral that defines the volume is not a Riemann integral, it will later be shown how 

this integral can be evaluated by the improper Riemann integral method. 

     For now, focus need not to be put on the notion of volume, but a separate study of the 

behavior of the integral in itself when it goes to infinity is to be taken into account. In a more 

technical language, it needs to be determined if the improper integral will converge or diverge; if 

it converges, to what number it converges. To do so, the Integral Test theorem for infinite series 

and the Cauchy Completeness Theorem are used, for which a rigorous demonstration will be 

given.  
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     The Integral Test theorem states that “If f is positive, continuous, and decreasing for x ≥ 1 and 

 = f (n), then  and  either converge or both diverge” (Larson, Hostetler, & 

Edwards, 2006, p. 617). Thus, if it is shown that the series converges, it is automatically shown 

that the improper integral converges; it will then be shown that the series  converges. In 

order to show the convergence of this series, the Cauchy theorem that applies to Cauchy 

sequences and its phrasing for series are necessary, and it will be shown how the series follows 

Cauchy convergence criterion. The theorem and proof is taken from Briger’s (2007) book Real 

Analysis: A Constructive Approach:  

     Theorem: Every Cauchy sequence converges to some real number. In other words, if         

 is a Cauchy sequence, then there exists an L such that  L. 

 

Proof. Using  we will define a consistent and fine family of real intervals and invoke the 

Completeness Theorem we’ve already proved to show the existence of L. For each integer 

, define the interval  as follows. Let  be an integer such that  1/k 

whenever . (Here we are using the assumption that  is a Cauchy sequence.) Let 

 and . We note that the length of  is , so the 

family F is clearly fine. To prove consistency, suppose that we have the interval  as above 

and another such interval . Either  or ; suppose that 

. Then , or . The left-hand inequality gives 

, while the right-hand inequality gives 

. Thus  and  intersect. The case  is proved the same way. Since the 

family F is fine in consistent, there is a unique real number L common to all of its intervals. 
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This L should work because it is arbitrarily close to each of the , and the  are arbitrarily 

close to all  for i and k big enough. All that’s left is an application of the triangle inequality 

to formalize this. So, suppose we are given . Choose k so large that , and 

suppose that . Then  

(p.104). 

     Now, we need to show that  is a Cauchy sequence in order to say whether or not it 

will converge. A formal definition is “The sequence  is called a Cauchy sequence if, for any 

 there is an integer  such that  whenever i and j ” (Bridger, 

2007, p. 102). Therefore, if we have two series  and  with 

, we can say that 

 

 

 

 

 

If we pick an appropriate N such that  such that , then  will be a 

Cauchy sequence (Bridger, 2007, p. 103). One needs to notice that the notions of sequence and 

series in the proof of the Cauchy theorem have been interchanged since the Cauchy series must 

follow the same convergence criterion.  

     Since  converges, also has to converge because of the Integral Test theorem. 

Now that the integral converges, the integral is evaluated by the improper integral method: 
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Since  converges to 1, the volume V of the Gabriel’s Horn is then  

    For this method, instead of considering only the x and y-axes, the Horn is defined by adding 

the z-axis; thus, the function of the solid of revolution is now 

 

A graph to this function is a double-headed horn along the x-axis: 

 

 

Figure 6 

 



Sabiduria, vol.1,1  Gabriel’s Horn   19 

 
 

 
 

                             

Since Gabriel’s Horn is a solid of revolution given by , to determine its volume is 

more convenient with cylindrical coordinates. When  and  with  

and  on the zy-plane, the volume of one of the horns is  

 

 

 

 

It can be seen that this result is exactly the same as that given by the Disk Method. 

     After we have presented the base of Euclidean geometry and its astounding importance in 

mathematics and many societies and after we have developed the non-Euclidean geometry which 

contradicts Euclid’s fifth postulate, it is seen that a wealth of knowledge can be possible outside 

the realm of the highly venerated Euclid’s system. The solid, while inconceivable with the idea 

that two parallel lines will always be equidistant, is well understood with the diametrically 

opposite idea. One then discovers a striking truth about mathematics, that it is not trapped in 

what it is called reality: a tangible, intuitive life. Based on logic, mathematics can go farther than 

our imagination can sometimes go and leave us in awe when it systematically oppugns the 

knowledge that we have so long considered as the truth. To the previous question about the earth 

and the pea, it is now left to the reader to figure out the answer. 
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